Introduction to Discrete-Event Simulation in R

Norm Matloff

January 28, 2009

Discrete-event simulation (DES) is widely used in business, industry and government. The term “discrete
event” refers to the fact that the state of the system changes only at discrete times, rather than changing
continuously. A typical example would involve a queuing system, say people lining up to use an ATM
machine. The number of people in the queue increases only when someone arrives, and decreases only
when a person finishes an ATM transaction, both of which occur only at discrete times.

It is not assumed here that the reader has prior background in DES. For our purposes here, the main ingre-
dient to understand is the event list, which will now be explained.

Central to DES operation is maintenance of the event list, a list of scheduled events. Since the earliest event
must always be handled next, the event list is usually implemented as some kind of priority queue. The
main loop of the simulation repeatedly iterates, in each iteration pulling the earliest event off of the event
list, updating the simulated time to reflect the occurrence of that event, and reacting to this event. The latter
action will typically result in the creation of new events. R’s lack of pointer variables means that we must
write code for maintaining the event list in a nontraditional way, but on the other hand it will also lead to
some conveniences too.

One of the oldest approaches to write DES code is the event-oriented paradigm. Here the code to handle the
occurrence of one event sets up another event. In the case of an arrival to a queue, the code may then set up
a service event (or, if there are queued jobs, it will add this job to the queue). As an example to guide our
thinking, consider the ATM situation, and suppose we store the event list as a simple vector.

At time 0, the queue is empty. The simulation code randomly generates the time of the first arrival, say 2.3.
At this point the event list is simply (2.3). This event is pulled off the list, simulated time is updated to 2.3,
and we react to the arrival event as follows: The queue for the ATM is empty, so we start the service, by
randomly generating the service time; say it is 1.2 time units. Then the completion of service will occur at
simulated time 2.3+1.2 = 3.5, so we add this event to the event list, which will now consist of (3.5). We will
also generate the time to the next arrival, say 0.6, which means the arrival will occur at time 2.9. Now the
event list consists of (2.9,3.5).

As will be detailed below, our example code here is hardly optimal, and the reader is invited to improve it.
It does, however, serve to illustrate a number of R issues. The code consists of some generally-applicable
library functions, such as schedevnt() and mainloop(), and a sample application of those library functions.
The latter simulates an M/M/1 queue, i.e. a single-server queue in which both interarrival time and service
time are exponentially distributed.

DES.r: R routines for discrete-event simulation (DES), with an example

each event will be represented by a vector; the first component will
be the time the event is to occur; the second component will be the

numerical code for the programmer-defined event type;
may add application-specific components

the programmer

a list named "sim" holds the events list and other information; for
convenience, sim has been stored as a global variable; some functions

have side effects

create "sim"

newsim <- function (numfields) {
sim <<- list ()
sim$currtime <<- 0.0 # current simulated time
sim$evnts <<- NULL # event list

insert event evnt into event list
insevnt <- function (evnt) {
if (is.null (simS$Sevnts)) {
sim$evnts <<- matrix (evnt,nrow=1)
return ()
}
find insertion point
inspt <- binsearch (sim$evnts[,1],evnt[1]
now "insert"

if (inspt > 1) e <- rbind(sim$evnts[l: (inspt-1),],evnt)

nrse <- nrow(sim$evnts)
if (inspt <= nrse)

e <- rbind(evnt, sim$Sevnts[inspt:nrse,])
sim$evnts <<- e

schedule new event; evnttime is the time at which the event is to
occur; evnttype is the event type; and appfields are the values of the

programmer-defined fields, if any

schedevnt <- function (evnttime,evnttype, appfields=NULL)
evnt <- c(evnttime,evnttype, appfields)
insevnt (evnt)

{

start to process next event (second half done by application

programmer via call to reactevnt())
getnextevnt <- function() {
head <- sim$evnts|[1,]
delete head
if (nrow(simS$Sevnts) == 1) sim$Sevnts <<- NULL else
sim$evnts <<- sim$evnts[-1,,drop=F]
return (head)

main loop of the simulation
mainloop <- function (maxsimtime) {
while (sim$currtime < maxsimtime) {
head <- getnextevnt ()

sim$currtime <<- head[l] # update current simulated time
reactevnt (head) # process this event (programmer-supplied ftn)

binary search of insertion point of y in the sorted vector x; returns

the position in x before which y should be inserted,
length(x)+1 if y is larger than x[length(x)]
binsearch <- function(x,y) {
n <- length (x)
lo <=1
hi <-n
while (lo+1 < hi) {
mid <- floor ((lo+hi)/2)
if (y == x[mid]) return(mid)
if (y < x[mid]) hi <- mid else lo <- mid

with the value

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
9”2
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

}

if (y <= x[lo]) return(lo)
if (y < x[hi]) return(hi)
return (hi+1)

application: M/M/1 queue, arrival rate 0.5, service rate 1.0

globals

rates

arvrate <- 0.5

srvrate <- 1.0

event types

arvtype <- 1

srvdonetype <- 2

initialize server queue

srvg <- NULL # will just consist of arrival times of queued jobs
statistics

njobsdone <- NULL # jobs done so far
totwait <- NULL # total wait time so far

event processing function requried by general DES code above
reactevnt <- function (head) {

if (head[2] == arvtype) { # arrival
if server free, start service, else add to queue
if (length(srvqg) == 0) {

srvqg <<- head[3]
srvdonetime <- sim$currtime + rexp(l,srvrate)
schedevnt (srvdonetime, srvdonetype, head[3])

} else srvg <<- c(srvqg,head[3])

generate next arrival

arvtime <- sim$currtime + rexp(l,arvrate)

schedevnt (arvtime, arvtype, arvtime)

} else { # service done

process job that just finished

do accounting

njobsdone <<- njobsdone + 1

totwait <<- totwait + sim$currtime - head[3]

remove from queue

srvg <<- srvqgl[-1]

more still in the queue?

if (length(srvqg) > 0) {
schedule new service
srvdonetime <- sim$currtime + rexp(l,srvrate)
schedevnt (srvdonetime, srvdonetype, srvg[l])

mmlsim <- function() {
srvg <<- vector (length=0)
njobsdone <<- 0
totwait <<- 0.0
create simulation, 1 extra field (arrival time)
newsim (1)
get things going, with first arrival event
arvtime <- rexp(l,rate=arvrate)
schedevnt (arvtime, arvtype, arvtime)
mainloop (100000.0)
return (totwait/njobsdone)

The simulation state, consisting of the current simulated time and the event list, have been placed in an R
list, sim. This was done out of a desire to encapsulate the information, which in R typically means using a
list.

This list sim has been made a global variable, for convenience and clarity. This has led to the use of R’s
superassignment operator << —, with associated side effects. For instance in mainloop(), the line

sim$Scurrtime <<- head[l] # update current simulated time

changes a global directly, while sim$evnts is changed indirectly via the call

head <- getnextevnt ()

If one has objections to use of globals, this could be changed, though without pointers it could be done only
in a limited manner.

As noted, a key issue in writing a DES library is the event list. It has been implemented here as a matrix,
sim$evnts. Each row of the matrix corresponds to one scheduled event, with information on the event time,
the event type (say arrival or service completion) and any application-specific data the programmer wishes
to add. The rows of the matrix are in ascending order of event time, which is contained in the first column.

The main potential advantage of using a matrix as our structure here is that it enables us to maintain the
event list in ascending order by time via a binary search operation by event time in that first column. This is
done in the line

inspt <- binsearch(sim$evnts[,1],evnt[1l]

in insevnt(). Here we wish to insert a newly-created event into the event list, and the fact that we are working
with a vector enables the use of a fast binary search.

However, looks are somewhat deceiving here. Though for an event set of size n, the search will be of time
order O(log n), we still need O(n) to reassign the matrix, in the code

if (inspt > 1) e <- rbind(sim$evnts[l: (inspt-1),],evnt)
nrse <- nrow(simSevnts)
if (inspt <= nrse)
e <- rbind(evnt, sim$evnts[inspt:nrse,])
sim$Sevnts <<- e

Again, this exemplifies the effects of lack of pointers. Here is a situation in which it may be useful to write
some code in C/C++ and then interface to R.

This code above is a good example of the use of rbind(). We use the function to build up the new version
of sim$evnts with our new event inserted, row by row. Recall that in this matrix, earlier events are stored in
rows above later events. We first use rbind() to put together our new event with the existing events that are
earlier than it, if any:

if (inspt > 1) e <- rbind(sim$evnts[l: (inspt-1),],evnt)

Then, unless our new event is later than all the existing ones, we tack on the events that are later than it:

nrse <- nrow(simS$evnts)
if (inspt <= nrse)
e <- rbind(evnt, sim$evnts[inspt:nrse,])

There are a couple of items worth mentioning in the line

sim$evnts <<- sim$evnts|[-1,,drop=F]

First, note that the negative-subscript feature of vector operations, in which the indices indicate which ele-
ments to skip, applies to matrices too. Here we are in essence deleting the first row of sim$evnts.

Second, here is an example of the need for drop. If there are just two events, the deletion will leave us with
only one. Without drop, the assignment would then change sim$evnts from a matrix to a vector, causing
problems in subsequent code that assumes it is a matrix.

The DES library code we’ve written above requires that the user provide a function reactevnt() that takes
the proper actions for each event. In our M/M/1 queue example here, we’ve defined two types of events—
arrival and service completion. Our function reactevnt() must then supply code to execute for each of these
two events. As mentioned earlier, for an arrival event, we must add the new job to the queue, and if the
server is idle, schedule a service event for this job. If a service completion event occurs, our code updates
the statistics and then checks the queue; if there are still jobs there, the first has a service completion event
scheduled for it.

In this example, there is just one piece of application-specific data that we add to events, which is each job’s
arrival time. This is needed in order to calculate total wait time.

